

Clean TeQ Sunrise

CCC meeting

15 February 2018

AGENDA

- General update
- Modification 4
 - Overview / update
 - Transport assessment
 - Clean TeQ's submission
- Modification 6
- Working with and investing in our community
- Air quality
- Q&A

PAGE 4

SINCE THE CCC LAST MET, WE HAVE:

- Placed Modification 4 on public exhibition (closed 13 December)
- Approval of Modification 5
- Placed Modification 6 on public exhibition (closed 7 February)
- Completed an independent pedestrian safety review Trundle
- Transported two autoclaves to Port Pirie
- Secured accommodation facility for Clean TeQ Sunrise construction
- Listed on the Toronto Stock Exchange (TSX)
- Appointed Clean TeQ's Chief Technical Development Officer, Stephen Grocott
- Commenced a short-term drilling program at Clean TeQ Sunrise
- Signed a lease for an office space in Parkes
- Reached 'in-principle agreement' with all three Councils for our Voluntary Planning Agreement (VPA)
- Announced scandium partnership agreement with Chinalco and Chongqing University
- Appointed Project Operations Director, Tim Kindred (commencing in April)

CLEAN The second second

Modification 4 (MOD4)

MOD 4 OVERVIEW

MOD 4 details the proposed changes:

- Addition of a water treatment plant
- Mine Site Modified Layout
- Tailings Storage Facility (increased extent and height)
- Evaporation Ponds and Water Storage Dam (reduced extent)
- Access surface water from the Lachlan River
- Other mine infrastructure area components (reconfigured)
- Addition of blasting at the mine site

There are <u>NO</u> changes to: Approved surface development area • Life of mine Mining method and rate • Open cut pits • Waste emplacements Processing rate • Workforce

MOD 4 OVERVIEW

----- Approved Gos Pipeline Approved Water Pipeline Vegetation Screening Existing Open Woodland

MOD 4 ENVIRONMENTAL ASSESSMENT

Environmental Assessment includes the following specialist assessments:

- Noise and Blasting Assessment
- Air Quality Assessment
- Preliminary Hazard Analysis
- Road Transport Assessment •
- Water Management Assessment •
- Aboriginal Cultural Heritage Assessment
- **Biodiversity Surveys**

Powering innovatio

MOD 4: WHAT WE PROPOSE

Transport – Use and Increases

- Increased sulphur demand
- External limestone supply
- Ammonium sulphate product
- Proposed limited heavy vehicle use of the McGrane Way
- Short-term road transport of water (during construction phase)

Limestone Quarry, Rail Siding and Gas Pipeline

No changes

PAGE 10

MODIFICATION 4: SUBMISSIONS RECEIVED

Concern raised – Project Traffic in Trundle

- We completed an independent Pedestrian Access Review while MOD4 was on public exhibition
- The Review concluded that:

... it is considered unlikely that a significant deterioration in the safety of that environment would result with the modified Project...

As for the existing conditions, some <u>aspects of the pedestrian and</u> vehicular environment could however be improved to mitigate the existing issues

MODIFICATION 4: SUBMISSIONS RECEIVED

- Concern raised Project Traffic in Trundle In addition to the **Pedestrian Safety Assessment Review**, we:
 - Prepared a supplementary **Road Noise Assessment** (Renzo Tonin & relevant road noise criteria in Trundle.
- **Concern raised Air Emissions**
 - and predicted impacts (including context of health/odour limits).

Associates) concluded that the MOD 4 would not lead to any exceedances of the

Clean TeQ and Ramboll Environ to present a comprehensive response at today's CCC meeting including description of control measures to be implemented; details of emissions to be released; dispersion mechanisms; modelling process;

PAGE 13 Clean TeQ

WE HAVE REDUCED OUR TRAFFIC NUMBERS

As promised, we have committed to a number of initiatives:

- Running employee shuttle buses from Condobolin, Parkes and Forbes
- We have obtained heavy vehicle authorisation permit to allow higher capacity vehicles from Parkes
- We are considering employing around a third of our operational workforce (i.e. approximately 100 personnel) in a Regional Operations Centre in Parkes. This would further reduce number of light vehicles.

As a result, over a 24 hour period, it is proposed that:

70 heavy vehicles, 70 light vehicles and six buses will pass through Trundle

	Light Vehicles	Heavy Vehicles	Shuttle Buses	Total Vehicles
Modified Project – With Higher Capacity Vehicles	70	70	6	146
Employees	50	-	-	50
Employee Shuttle Buses	-	-	6	6
Limestone (with higher capacity trucks)	-	52	-	52
Lime	-	8	-	8
Other	20	10	-	30

An average of approximately three heavy vehicles per hour on Forbes Street, Trundle

- Our proposed traffic movements through Trundle will be 20% below the approved Project

CLEAN TEAN Powering innovation

Modification 6 (MOD6) Accommodation Camp

MODIFICATION 6

Status Update

- EA lodged in December 2017 and public exhibition ended on 7 February 2018
- Draft Responses to Submissions Report to be prepared by 5 March 2018

Clean TeQ PAGE 16

CLEAN TEAN Powering innovation

Working with our community

COMMUNITY ENGAGEMENT

- 27 February respectively (to be advertised)
- 2. Meet with 'near neighbours' in Fifield in the coming weeks
- 3. Publish and distribute the second edition of our community newsletter (print and electronic)
- Launch online forms for people to register for employment or procurement opportunities 4.

1. Hold community drop-in sessions in Trundle and Fifield on Monday and Tuesday, 26 and

WELCOME YOUR IDEAS, INPUT AND PARTICIPATION

INVESTING IN OUR COMMUNITY

Voluntary Planning Agreement

- 'In-principle' agreement for Voluntary Planning Agreement with Forbes, Lachlan and Parkes Shire Councils for our Voluntary Planning Agreement
- \$400,000 per annum community contribution (50 % Lachlan Shire Council, 25% Forbes Shire Council and 25% Parkes Shire Council)
- Additional \$340,000 in road maintenance contributions per annum
- Total spend of \$740,00 per year

Community Investment Program

To be launched later this year

OUR VALUES – WHAT'S IMPORTANT TO US

Simplicity

Our approach is simple, focused and drives value

Ambition

We bring courage and ambition to everything we do

CLEAN TEAN Powering innovation

Air quality & emissions

Ramboll Environment Stephen Grocott

AIR EMISSIONS – SULFUR DIOXIDE

- oil refining)
- Imported sulfur is burnt in an acid plant to make sulfur dioxide (SO_2) .
- 99.7 99.9% of the SO₂ is captured and oxidised to make sulfuric acid (H_2SO_4), electricity and steam • 0.1 - 0.3% of sulfur is exits with stack gas as SO₂

• Sulfur (by-product from natural gas production and

 The acid is stored in tanks and used to dissolve the nickel, cobalt and scandium

Processing Plant

SULFUR DIOXIDE

- 1. High concentrations, for long periods of time, can affect health
- 2. Maximum acceptable air concentrations are often determined after applying a safety factor to the maximum concentration that doesn't affect an "exercising asthmatic"
- 3. World-wide health authorities say maximum 1 hr per year at 0.2 ppmv^{*} (same as Australia's NEPM**)
- Working backwards, the NSW EPA limits our 4. stack emissions to 1,000 mg/m³ (350 ppm). We target less than 280 ppmv.
- 5. SO₂ doesn't bio-accumulate. It forms sulfate

*What is ppmv?

ppmv = one part per million by volume (e.g. dessert spoonful in a 20,000 L swimming pool)

 $0.02 \text{ ppmv} = 20 \text{ ppbv} = 58 \text{ ug/m}^3 = \text{one drop in } 5,000 \text{ L}$

**National Environment Protection Measure (N for sulfur dioxide				
Allowed exceedances (NEPM goal)				
One-hour standard	0.2 ppm	One hour per		
One-hour standard	0.08 ppm	One day per y		
One-hour standard	0.02 ppm	None		

PAGE 24

Powering innovatio

CLEAN TEQ SUNRISE PROJECT MODIFICATION 4 AIR QUALITY ASSESSMENT

CLEAN TEQ SUNRISE PROJECT 15/02/2018

OVERVIEW

- Overview of Air Quality Assessment in NSW why and how
- Understanding dispersion and how dispersion models work
- Commonly used dispersion models in NSW
- Overview of model inputs
- Interpreting model outputs and results
- Questions

SW – why and how ersion models work

AIR QUALITY ASSESSMENT IN NSW

- NSW EPA provide guidance for air quality assessment in NSW (the Approved Methods) which specifies:
 - How input data are collected and used:
 - Meteorological data;
 - Emissions data; \bullet
 - Terrain data; and
 - Building, receptors etc. \bullet
 - How dispersion modelling should be performed.
 - How results should be presented and interpreted.
 - What should be included in the air quality assessment report.

CLEAN TEQ SUNRISE PROJECT 15/02/2018

WHAT IS A DISPERSION MODEL?

- Set of mathematical equations (algorithms) which are used to characterise the behaviour of an emission source (e.g. a stack).
- Can be used to predict pollutant concentrations at specified distances downwind of an emission source.

CLEAN TEQ SUNRISE PROJECT 15/02/2018

EXAMPLE OF DISPERSION EQUATION (GAUSSIAN PLUME)

$$\chi_{(x,y,z)} = \frac{Q}{2\pi\sigma_{y}\sigma_{z}U} \exp\left[-\frac{y^{2}}{2\sigma_{y}^{2}}\right] \left\{ \exp\left[-\frac{(z-H_{e})^{2}}{2\sigma_{z}^{2}}\right] + \exp\left[-\frac{(z+H_{e})^{2}}{2\sigma_{z}^{2}}\right] \right\}$$

- In simplified terms:
 - Emission rates determine source strength
 - Wind direction and wind speed determine where and how far emissions travel.
 - Dispersion parameters determine how well a plume is mixed into surrounding atmosphere.
 - Other more complex parameters include, plume depletion, deposition (wet and dry) building wake effects, terrain effects, chemistry.

where,

).	χ _(x,y,z) =	concentration (μ g/m ³) at distance x downwind, across wind, and at height z above ground

$$U = wind speed (m/s)$$

$\sigma_v / \sigma_z =$	standard deviations of lateral and vertical		
/ –	concentrations (i.e. dispersion parameters)		

$$H_e = effective stack height (m)$$

$$Q = source emission rate (g/s)$$

distance y

SELECTING THE RIGHT DISPERSION MODEL

- The model selected for an air quality assessment depends on the application:
 - Some models may perform 'better' in complex terrain.
 - Some models may perform 'better' if low wind speed conditions are important.
 - Some models may model roads/vehicle emissions better.
 - Some models treat chemistry better.
 - Some models are more appropriate for regional airshed modelling.

- General rules
 - Choose an approved 'regulatory' model.
 - Use professional judgement to select the best model for the application.
 - Consistency.
 - Apply conservative assumptions (cautious approach).

COMMON DISPERSION MODELS USED IN NSW

Model	
AERMOD	 Suitable for the majority of
	 US EPA and Victorian EPA a all other states – NSW EPA Methods.
AUSPLUME	 Previously approved regulation
	 Out of date (2005) and no
CALPUFF	 Typically used for complex t
	 Better suited to regional sca
TAPM	 Mostly used as a meteorolo

Notes

- near field applications (<50km).
- pproved regulatory model and used and accepted in will include it when they update the Approved
- tory model for simple near field applications in NSW.
- longer used.
- terrain applications and/or odour.
- ale modelling.
- gical model to generate input files for other models

WHAT INPUTS ARE REQUIRED FOR DISPERSION MODELLING?

Ground-level Concentrations

> CLEAN TEQ SUNRISE PROJECT 15/02/2018

SUNRISE PROJECT – MODEL INPUTS (TERRAIN)

CLEAN TEQ SUNRISE PROJECT 15/02/2018

SUNRISE PROJECT – MODEL INPUTS (METEOROLOGY)

- Available regional data reviewed.
- Nearest site (Condobolin Airport) was comparable to EIS and other data sources (i.e. Northparkes & Cowal Mines).
- Relatively 'simple' regional terrain

 i.e. no mountains, etc. that
 would significantly alter weather
 patterns between Condobolin and
 the mine.
- Analysis of long term variability to select <u>representative</u> year.

Frequency of counts by wind direction (%)

SUNRISE PROJECT – MODEL INPUTS (EMISSION SOURCES)

- Sulphuric acid plant emissions are based on:
 - NSW EPA's allowable in-stack concentration limits (maximum case); and
 - Proposed stack design parameters.
- Power generation emissions are based on:
 - Maximum power demand; and
 - Proposed stack design parameters.
- Fugitive dust from maximum case mining scenarios.

CLEAN TEQ SUNRISE PROJECT 15/02/2018

SUNRISE PROJECT – INTERPRETING MODEL OUTPUTS

Annual average $SO_2 (\mu g/m^3)$

CLEAN TEQ SUNRISE PROJECT 15/02/2018

SUNRISE PROJECT – NO_X AND SO_X EMISSIONS

- The phenomenon known as acid rain is a process where SOx and NOx emissions react with water in the atmosphere and fall to the ground as wet or dry deposition.
- Acid rain historically occurred in industrialised areas with high emission loads of SOx and NOx (e.g. from coal fired electrical power generation).
- No evidence of 'Acid Rain' occurring in NSW even in concentrated heavy industrial areas (i.e. Hunter Valley and Wollongong).
- Predicted SOx and NOx ground level concentrations are well below air quality objectives for ecosystem health, biodiversity and agriculture.

SULFUR DIOXIDE (SO₂) SUMMARY

- 1. We are selecting from amongst the world's best acid plant manufacturers and designs
- 2. We are aiming for less than 280 ppm SO₂ vs expected EPA limit of ~350 ppm (1,000 mg/m³ in POEO Clean Air Regulation standards).
- 3. We monitor stack emissions and publish online
- 4. The stack is designed to achieve efficient SO_2 dispersion.
- 5. We have used state-of-the-art, validated dispersion modelling (Ramboll)
- 6. Ground level concentrations are far below (better than 10X lower) concentrations that might affect the most sensitive of people (e.g. exercising asthmatic)
- 7. SO₂ doesn't bio-accumulate
- SO₂ only affects rain water quality or causes acid rain in air sheds if there is massive, untreated SO₂ emissions from hundreds of untreated sources (e.g. power plants burning high sulfur coal and metal smelters)

Inrise PAGE 38

AIR EMISSIONS – SULFUR DIOXIDE

Figure 5.1: Maximum 1-hour average sulfur dioxide concentrations in NSW (1994 - 2009)

PAGE 39

How will we manage and monitor emissions

- Process control systems to monitor and manage acid plant performance.
- Stack concentration monitoring and reporting in accordance with EPL requirements.

Clean TeQ PAGE 40

CLEAN TEAN Powering innovation

Questions & Answers

Sunrise Project–Model Inputs (Emission Sources)

- •Sulphuric acid plant emissions are based on:
 - •NSW EPA's allowable in-stack concentration limits (maximum case); and
 - Proposed stack design parameters.
- Power generation emissions are based on:
 - Maximum power demand; and
 - Proposed stack design parameters.
- •Fugitive dust from maximum case mining scenarios.

Stack	Height (metres)	Diameter (metres)	Exit velocity (metres/ second)	Flow r (cubic m secor
uric acid plant	80	1.8	26.6	53.2
power plant	10	0.9	18.5	5.6
fired auxiliary	10	0.9	22.7	8.7

CLEAN TEAN Powering innovation

BACKUP

Formation of Acid Clouds and Acid Rain

Top Sources in 7 County Area for SO2 Emissions (104816 tons/year)

Industrial Processes - Ferrous Metals, 510

Fuel Comb - Industrial Boilers, ICEs - Other, 2,187_

Industrial Processes - NEC, ______ 2,361

Industrial Processes - Non-_ ferrous Metals, 3,217

Fuel Comb - Industrial Boilers, ICEs - Coal, 4,849

Worldwide sulfuric acid end-use

